

Available online at www.sciencedirect.com

Tetrahedron Letters 45 (2004) 923-925

Tetrahedron Letters

Synthesis of cyclic peptides through hydroxyl side-chain anchoring

Liang Z. Yan,* Patrick Edwards, David Flora and John P. Mayer*

Lilly Research Laboratories, A Division of Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA

Received 27 August 2003; revised 23 October 2003; accepted 24 November 2003

Abstract—A general method was developed for the synthesis of serine or threonine containing cyclic peptides utilizing the β -hydroxyl side-chain of these residues as an anchor point to Wang resin. The peptide chain was assembled by conventional Fmoc/tBu solid-phase chemistry followed by palladium catalyzed exposure of the allyl protected C-terminus and on-resin cyclization. The cyclic heptapeptide stylostatin 1 was prepared to demonstrate the utility of this technique.

© 2003 Elsevier Ltd. All rights reserved.

The on-resin cyclization of peptides is a particularly advantageous approach in that it avoids the isolation and purification of the linear intermediate, minimizes dimerization side-reactions and results in increased overall yield of the final product. Practical application of this method to homodetic 'head-to-tail' cyclic peptides, however, requires a specialized solid-phase strategy, including orthogonal protection for the C-terminus as well as solid support linkage to either an amino acid side-chain or peptide backbone.^{1,2} To date, side-chain anchoring strategies have been devised for a number of amino acid side-chain functionalities. Merrifield and co-workers first reported the synthesis of a hexapeptide through dinitrophenyl linkage to a histidine imidazole.³ Subsequent application of this concept utilized the sidechains of Asp/Asn and Glu/Gln in conjunction with temporary allyl protection for the C-terminal α-carboxyl group.^{4,5} This strategy was further extended to other side-chains using active carbonate linker for hydroxyl side-chains of Ser, Thr,⁶ and Lys,⁷ as well as the recently reported chroman linkage for Arg.⁸ Additionally, the phenol group of Tyr has been successfully linked to solid support through Mitsunobu chemistry.9

We recently reported a procedure to link amino acid alcohols to activated Wang resin as an initial step in the synthesis of C-terminal peptide alcohols.¹⁰ We reasoned that the β -hydroxyl group of serine and threonine would function equally well as substrates in the BF₃ etherate catalyzed loading of trichloroacetimidate activated Wang resin. Indeed, Fmoc-Ser-OAllyl¹¹ was loaded with a substitution level of 0.44 mmol/g, and similarly Fmoc-Thr-OAllyl achieved a loading of 0.35 mmol/g using previously reported conditions.^{10,12} Briefly, commercially available trichloroacetimidate Wang resin (1.0 mmol, 0.77 mmol/g) was swollen in DCM for 30 min and then washed several times with dry THF. Fmoc-Ser-OAllyl (4.0 mmol) was dissolved in dry THF and transferred to the resin bed. Following the addition of BF_3 etherate (1.0 mmol) via syringe, the mixture was gently agitated for 1 h at room temperature. Methanol (2.0 mL) was then added and the reaction was allowed to proceed for another 5 min. The substitution level was determined by the method of Meienhofer.¹³

To demonstrate the utility of this technique, we carried out the synthesis of stylostatin 1, a cycloheptapeptide originally isolated from the South Pacific Ocean sponge¹⁴ and synthesized previously by several groups.¹⁵ The side-chain immobilized Fmoc-Ser-(Wang resin)-OAllyl prepared above was used in the Fmoc/tBu-based synthesis. The primary sequence was assembled using an ABI 433A synthesizer utilizing a single coupling, DCC/ HOBt activation protocol, a four-fold excess of each amino acid residue and a conventional protecting group scheme. The removal of allyl protection was carried out according to the method by Albericio and co-workers.¹⁶ Two 30 min treatments at room temperature with a catalytic amount of Pd(PPh₃)₄ (0.1 equiv) and an excess of allyl acceptor phenylsilane (24 equiv) in DCM resulted

Keywords: Hydroxyl side-chain loading; Cyclic peptide synthesis; Trichloroacetimidate resin.

^{*} Corresponding authors. Tel.: +1-317-433-7283; fax: +1-317-276-1177 (L.Z.Y.); tel.: +1-317-277-9152; fax: +1-317-276-1177 (J.P.M.); e-mail addresses: lyan@lilly.com; j.mayer@lilly.com

^{0040-4039/\$ -} see front matter © 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2003.11.107

Scheme 1. Synthesis of stylostatin 1 (all reactions were carried out at room temperature unless otherwise specified): (a) 20% piperidine in DMF; (b) $Pd(Ph_3P)_4/PhSiH_3$ in DCM, 30 min twice; (c) PyBOP/HOBt/DIEA in DMF; (d) TFA.

in clean removal of the allyl protecting group. The resinbound peptide was then used in the on-resin cyclization, while a portion was subjected to acidolytic cleavage to obtain the linear precursor (Scheme 1).

The crude linear peptide showed more than 70% purity on reverse-phase HPLC (Fig. 1A) and the desired mass (theoretical mass 760.9; found MH^+ 761.6, $(M+Na)^+$ 783.4). This further demonstrated that the loading of Fmoc-Ser-OAllyl was successful and the peptide chain assembly on this preloaded resin was efficient. Cyclization of the crude linear peptide in solution (4 equiv

Figure 1. HPLC traces of specific compounds: (A) Crude linear stylostatin 1; (B) purified stylostatin 1 cyclized in solution; (C) purified stylostatin 1 cyclized on-resin; (D) mixture (1:1) of stylostatin 1 from cyclizations on-resin and in solution. HPLC conditions: Solvent A: water with 0.1% TFA; solvent B: acetonitrile with 0.1% TFA; C18 Vydac reverse-phase, 4.6×250 mm, 5μ M, 300Å pore size; gradient: linear from 0% B to 65% B over 20 min, then 90% B for 5 min, and 0% B for another 5 min. Wavelength used for detection: 214 nm.

PyBOP/HOBt and 10 equiv of DIEA) at highly diluted conditions¹⁷ was completed within 4 h at room temperature and afforded the reference compound stylostatin 1. The product was purified to homogeneity on reverse phase HPLC (Fig. 1B) and showed the expected mass (theoretical mass 742.8; mass observed MH⁺ 743.7, (M+Na)⁺ 765.8) with a yield of 59.9%.

On-resin cyclization was accomplished with 4 equiv of PyBOP/HOBt and 10 equiv of DIEA in DMF overnight at room temperature. The cyclic product was then deprotected and cleaved from the resin support using a mixture of TFA/Tis/H₂O/thioanisole (92.5/2.5/2.5/2.5, v/v) for 2 h at room temperature. The final product stylostatin 1 was purified to homogeneity (Fig. 1C) and showed the expected mass (theoretical mass 742.8; observed MH⁺ 743.7, (M+Na)⁺ 765.4). Based on the initial loading, overall yield of the on-resin stylostatin synthesis was calculated at 13.9%.

A mixture (1:1) of stylostatin 1 obtained by on-resin cyclization and by the solution method was homogenous and showed a single peak on reverse phase HPLC (Fig. 1D), which suggests that the two methods afford the same product.

In summary, we have demonstrated that the β -hydroxyl function of serine and threonine could be conveniently used as a tether point for solid-phase linkage. With appropriate temporary, orthogonal protection for the C-terminal α -carboxyl group this resin construct can then function in an on-resin protocol for cyclic peptide synthesis. This technique effectively expands the scope of on-resin Fmoc/tBu-based cyclic peptide synthesis to include serine and threonine containing peptides as synthetic targets.

Acknowledgements

We thank Drs. Lianshan Zhang and Wayne Kohn for helpful discussions.

References and notes

- Lambert, J. N.; Mitchell, J. P.; Roberts, K. D. J. Chem. Soc., Perkin Trans. 1 2001, 471–484.
- Jensen, K. J.; Alsina, J.; Songster, M. F.; Vagner, J.; Albericio, F.; Barany, G. J. Am. Chem. Soc. 1998, 120, 5441–5452.
- Isied, S. S.; Kuehn, C. G.; Lyon, J. M.; Merrifield, R. B. J. Am. Chem. Soc. 1982, 104, 2632–2634.
- 4. (a) Rovero, P.; Quartara, L.; Fabbri, G. *Tetrahedron Lett.* **1991**, *32*, 2639–2642; (b) Trzeciak, A.; Bannwarth, W. *Tetrahedron Lett.* **1992**, *33*, 4557–4560.
- Kates, S. A.; Solé, N. A.; Johnson, C. R.; Hudson, D.; Barany, G.; Albericio, F. *Tetrahedron Lett.* **1993**, *34*, 1549–1552.
- Alsina, J.; Chiva, C.; Ortiz, M.; Rabanal, F.; Giralt, E.; Albericio, F. *Tetrahedron Lett.* 1997, 38, 883–886.
- Alsina, J.; Rabanal, F.; Giralt, E.; Albericio, F. *Tetrahe*dron Lett. **1994**, 35, 9633–9636.
- García, O.; Nicolás, E.; Albericio, F. *Tetrahedron Lett.* 2003, 44, 5319–5321.
- Cabrele, C.; Langer, M.; Beck-Sickinger, A. G. J. Org. Chem. 1999, 64, 4353–4361.

- 10. Yan, L. Z.; Mayer, J. M. J. Org. Chem. 2003, 68, 1161-1162.
- Prepared according to a literature method: Vorherr, T.; Bannwarth, W. *Bioorg. Med. Chem. Lett.* 1995, 5, 2661– 2664.
- 12. Hanessian, S.; Xie, F. Tetrahedron Lett. 1998, 39, 733-736.
- Meienhofer, J.; Waki, M.; Heimer, E. P.; Lambros, T. J.; Makofske, R. C.; Chang, C. D. Int. J. Pept. Res. 1979, 13, 35–42.
- Pettit, G. R.; Srirangam, J. K.; Herald, D. L.; Erickson, K. L.; Doubek, D. L.; Schmidt, J. M.; Tackett, L. P.; Bakus, G. J. J. Org. Chem. 1992, 57, 7217–7220.
- (a) Bourne, G. T.; Meutermans, W. D. F.; Alewood, P. F.; McGeary, R. P.; Scanlon, M.; Watson, A. A.; Smythe, M. L. J. Org. Chem. **1999**, *64*, 3095–3101; (b) Hashimoto, C.; Atuzawa, Y.; Kudo, M.; Kodomari, M. Peptide Science **1999**, *35*, 473–476; (c) Rosenbaum, C.; Waldmann, H. Tetrahedron Lett. **2001**, *42*, 5677–5680.
- Thieriet, N.; Alsina, J.; Giralt, E.; Guibé, F.; Albericio, F. Tetrahedron Lett. 1997, 38, 7275–7278.
- 17. Linear stylostatin 1 (15.3 mg, 0.02 mmol) in 3 mL of dry DMF was added continuously to a solution of PyBOP/HOBt/DIEA in DMF (3 mL)/DCM (7 mL) over a period of 2 h through a syringe pump. The reaction was allowed to proceed for another 2 h at RT and LCMS confirmed that there was no detectable linear starting material. Solvent removal was followed by RP-HPLC purification to give the final product stylostatin 1 (8.9 mg, a yield of 59.9%).